Integrated Vector Management and entomological monitoring - updates and plans

Dr Raman Velayudhan
WHO, Geneva
IVM policy development

Vector control is an important component of the prevention of vector-borne diseases. An effective vector control is available for some diseases, so that vector control is the only option. Although vector control methods have several weaknesses, which are outlined in the Handbook, they could be made more efficient, effective, and ecologically sound, through a combination of approaches. Based on local evidence, using a range of interventions, covering several diseases and using existing systems and local human resources, these approaches are divided in integrated vector management (IVM), which is defined as internal decision-making for optimal use of resources for vector control.
IVM curriculum

Vector control is an important component of the prevention of vector-borne diseases. No effective vaccine or medication is available for some diseases, so that vector control is the only option. Although vector control methods have several weaknesses, which are outlined in the Handbooks, they can be made more efficient, effective and ecologically sound, through a combination of approaches: basing decisions increasingly on local evidence, using a range of interventions, covering several diseases and using existing systems and local human resources. These approaches are central to integrated vector management (IVM), which is defined as rational decision-making for optimal use of resources for vector control.
Handbook for IVM

Vector control is an important component of the prevention of vector-borne diseases. No effective vaccine or medication is available to some diseases, so that vector control is the only option. Although vector control methods have several weaknesses, which are outlined in the Handbook, they can be made more efficient, effective, and ecologically sound, through a combination of approaches based on decisions necessarily of local evidence, using a range of interventions, covering several diseases and using existing systems and local human resources. These approaches are central to integrated vector management (IVM), which is defined as rational decision-making for optimal use of resources for vector control.
M&E indicators for IVM

• To guide countries in the monitoring and evaluation of the implementation of their national IVM strategy, which will help them making improvements where required.

• To propose standard methods that will facilitate the monitoring and evaluation at the regional and global level.
WHO Report

Malaria and lymphatic filariasis: the case for integrated vector management

Henk van den Berg, Louise A Kelly-Hope, Steve W Lindsay

www.thelancet.com/infection Published online October 19, 2012
Percentage of countries with national IVM policy

<table>
<thead>
<tr>
<th>Regions</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>53</td>
</tr>
<tr>
<td>AMR</td>
<td>78</td>
</tr>
<tr>
<td>EUR</td>
<td>60</td>
</tr>
<tr>
<td>EMR</td>
<td>71</td>
</tr>
<tr>
<td>SEAR</td>
<td>57</td>
</tr>
<tr>
<td>WPR</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>62%</td>
</tr>
</tbody>
</table>
OUTCOME 2012

A. NATIONAL ASSESSMENTS & POLICIES AND STRATEGIES DEVELOPMENT

VCNA: Bolivia, Ecuador, Peru, Suriname

National IVM Policy and strategy: Burundi, Liberia, Rwanda

National strategy for specific interventions: Liberia (IRS, LLINs), Burundi (IRS), Mali (IRS)
B. TECHNICAL CAPACITY STRENGTHENING

- Entomology training videos on standardized methodologies (Spanish, Portuguese, English)

- Entomology training manual (Eng, Spanish, Portuguese & French) Hard copy, PDF and online

- Human resource strengthening: Targeted training of ento-technicians: Burundi (25 persons), DRC (18 persons), Guinea (26)

- Entomological equipment & supplies: Burundi, DRC, Guinea, Ethiopia, Liberia

- Insectary construction/strengthening: Burundi, Rwanda, Zimbabwe

- Several countries supported to initiate/strength ento-monitoring: e.g. nationwide assessment of susceptibility (Zimbabwe), DRC, Guinea, Amazon valley countries joint 3- year joint plan
Implementation of IVM

Attributes

- Cost-effectiveness
- Intersectoral action
- Regulatory and operational measures
- Subsidiarity
- Decision-making
- Sustainability

Requirements for implementation

- Institutional arrangement
- Regulatory framework
- Decision making-criteria and skills
- Vector Control delivery
Decentralization is key

- IVM promotes analysis and decision making at **lowest possible level**
- This implies the integration of IVM within **decentralized health system**
- **Capacity needed** for local analysis and decision making; this will create ownership
- **Multi-disease approach** makes most sense at decentralized and community level: combining all locally-relevant vectors into one adaptive approach that is able to deal with any locally prevailing VBD
Integrated Vector Management (dengue)

- Legislative Support
- Cost effective
- Sustainability
- Subsidiarity
- Intersectoral

IVM
Capacity building, Advocacy
Plans 2013

1. Capacity building
2. Entomological surveillance methods
3. Documentation of case studies
4. Advocacy for IVM
5. Implementation of IVM
Thank you