Development of a Global Strategy against Insecticide Resistance in malaria vectors

Vector Control & Prevention
Global Malaria Programme
World Health Organisation
Global Malaria Programme

Outline

• The current situation – the threat of pyrethroid resistance for malaria control
• Strategies to find new molecules for nets and walls
• Strategies to slow down the spread of resistance
• The policy process
GLOBAL MALARIA PROGRAMME
Insecticide Resistance - 1

1. Already a major issue in Africa – some reports from India

1. \textit{kdr} genes are already widespread – but other metabolic mechanisms are spreading rapidly – oxidases & esterases
 - too little data about distribution or importance of these mechanisms
 - may be more powerful as causes of control failure

2. Big gaps in the data – but consolidated regional databases do exist.

1. Disconnection between data and insecticide choice decisions: e.g.
 - Zanzibar, Kagera
Impact of insecticide resistance

- Very little data on impact of insecticide resistance on malaria control

- Most studies have used experimental huts and impact on entomological parameters

- Mozambique/KZN case (*An. funestus*) showed potential impact on malaria cases (although there are confounding factors as always)

- Urgent need for well conducted studies on epidemiological impact of resistance (multi-country study about to be launched, funded by BGMF & coordinated by GMP)
Summary points

- Pyrethroid resistance is widespread in *An gambiae* (and perhaps even more so in *An funestus*).
- Resistance to DDT also common.
- Carbamate and OP resistance so far restricted to W. Africa.
- *kdr* alone has not yet been shown to be a cause of control failure.
- But combination of *kdr* and other mechanisms is potentially much more serious – focus on *kdr* may have led to a false sense of security?
Insecticide Resistance - Response

1. **Recommend** that in GF (and other donor) proposals, resistance data should be quoted (for large-scale IRS or ITNs) and used to justify insecticide choice (for IRS) - as a condition for funding.

1. Expert consultation planned for March to review the current situation and recommend global policies – roll out via WIN / VCWG
 - Acceptance by the 3 or 4 main donors is necessary…. and probably sufficient!

2. Options for management:
 - Likely to recommend rotations - but mixtures are probably much more effective
 - Need more mixture (combination) products esp for nets
 - Reserve pyrethroids for ITNs? (NOT for IRS? Agriculture?)
Strategies to find new molecules for walls

- Chemical companies are the key source – they have the experience and knowledge

- IVCC – critical support, stimulus

- IVCC and Chemical companies
 - a few compounds new to public health are coming through
 - in the pipeline and medium-term prospects
 - but as IRS and/or wall-sheeting products

- But IRS needs repeated application once or twice a year

- Wall-sheeting last much longer but need elaborate fitting
Strategies to find new molecules for nets

- RBM needs effective ITNs! Nets have many advantages as a medium for insecticide!
 - between mosquito and the host
 - even untreated nets protect if intact
 - distribution at long intervals, village-scale or through EPI (don’t have to visit every house)
 - can’t cover 450m people at risk any other way!

- Nothing in the pipeline for nets
 - a molecule discovered tomorrow would take >5y to develop

- Much less incentive for primary chemical companies
 - they take 30% to 60% of expenditure on IRS
 - but only ~ 5% of expenditure on LLINs
 - They stand to gain from a shift to IRS from LLINs !!

- Need to find a solution to this unbalanced incentive !!
Strategies to slow down the spread of resistance

• Rotations - yes
 • but not reliable, not enough?
 • depend on fitness disadvantage of R, so only effective when R is rare?

• Combined products - yes
 • e.g. roof and walls with different products
 • Encouraging preliminary results

• Mixtures - yes
 • The most robust approach - less dependent on assumptions about resistance
 • industry ready, but little experience so far
 • Issues of tox, regulation, barriers to market entry

• Must act early -
 • Waiting for proof of control failure is no strategy at all !!
Strategies to slow down the spread of resistance

Reserve pyrethroids for use on Nets?
• From IRS? Would greatly reduce cost of IRS
 • e.g. at current prices would reduce IRS coverage from 29m to 11m population
 • might still be worthwhile, if it helped to slow down resistance enough…
• From agriculture? Desirable if feasible, at least for some applications (rice)

• The Lesson from Agriculture? Don’t do it like they do it in agriculture = ‘scramble competition’, i.e. a race to maximise profit!!

• All Resistance-delaying strategies raise short-term costs
 • Co-operation - Everyone must join in – Solid consensus needed
 • But some will lose out!!
 • but strategies not guaranteed!

• Evidence Issues - Current evidence is indirect & argumentative:
 • Problem: Evolutionary events are large-scale – can’t do village scale trials with R gene frequency change as the outcome
 • Need better evidence on sources of selection, methods to evaluate management strategies
Two populations: 25% are resistant; sporozoite rate = 1%

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Negative Sporozoite</th>
<th>Positive Sporozoite</th>
<th>Sporozoite rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>990</td>
<td>10</td>
<td>1 %</td>
</tr>
</tbody>
</table>
Two populations: 25% are resistant; sporozoite rate = 1%

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Negative Sporozoite</th>
<th>Positive Sporozoite</th>
<th>Sporozoite rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>800</td>
<td>792</td>
<td>8</td>
<td>1 %</td>
</tr>
<tr>
<td>Resistant</td>
<td>200</td>
<td>198</td>
<td>2</td>
<td>1 %</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>990</td>
<td>10</td>
<td>1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Negative Sporozoite</th>
<th>Positive Sporozoite</th>
<th>Sporozoite rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>800</td>
<td>796</td>
<td>4</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Resistant</td>
<td>200</td>
<td>194</td>
<td>6</td>
<td>3 %</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>990</td>
<td>10</td>
<td>1 %</td>
</tr>
</tbody>
</table>
Two populations: 25% are resistant; sporozoite rate = 1%

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Negative Sporozoite</th>
<th>Positive Sporozoite</th>
<th>Sporozoite rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>800</td>
<td>792</td>
<td>8</td>
<td>1 %</td>
</tr>
<tr>
<td>Resistant</td>
<td>200</td>
<td>198</td>
<td>2</td>
<td>1 %</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>990</td>
<td>10</td>
<td>1 %</td>
</tr>
</tbody>
</table>

Fisher's exact test P = 0.0006
Two populations: 25% are resistant; sporozoite rate = 1%

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Negative Sporozoite</th>
<th>Positive Sporozoite</th>
<th>Sporozoite rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>400</td>
<td>396</td>
<td>4</td>
<td>1%</td>
</tr>
<tr>
<td>Resistant</td>
<td>100</td>
<td>99</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>495</td>
<td>5</td>
<td>1%</td>
</tr>
</tbody>
</table>

Fisher's exact test $P = 0.057$

<table>
<thead>
<tr>
<th></th>
<th>Total population</th>
<th>Negative Sporozoite</th>
<th>Positive Sporozoite</th>
<th>Sporozoite rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>400</td>
<td>398</td>
<td>2</td>
<td>0.5%</td>
</tr>
<tr>
<td>Resistant</td>
<td>100</td>
<td>97</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>495</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Human blood</td>
<td>Animal blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Landing Catch</th>
<th>Human Landing Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside treated net with holes</td>
<td>Outside net</td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
</tr>
<tr>
<td>Resistant</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nulliparous</th>
<th>Parous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The policy process

1. Review now being completed
 • Current situation
 • Strategy options

1. Techical Consultation on this issue - 1st qtr

2. Roll-out to RBM constituencies via Vector Control Working Group (VCWG)
 • Need for careful consensus building
 • New Products
 • Choosing insecticide / strategy based on subregional data
 • M & E tools